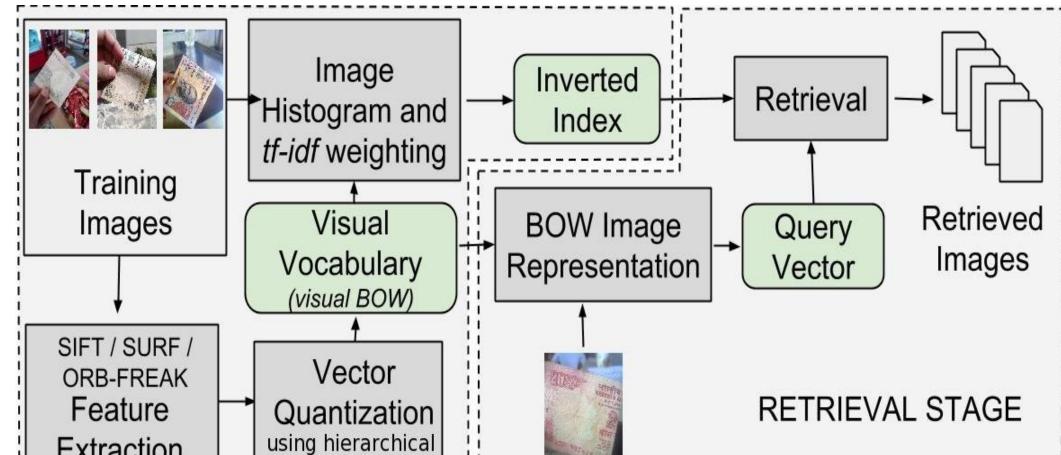


Currency Recognition on Mobile Phones

Suriya Singh¹, Shushman Choudhury², Kumar Vishal¹ and C.V. Jawahar¹ ¹IIIT Hyderabad ² IIT Kharagpur

Goal

Method Overview


Recognizing currency bills in cluttered scenes and challenging situations on a low-end mobile phone. This mobile application is intended for robust, practical and easy use by the visually impaired.

Motivation and Challenges

B. Instance Retrieval

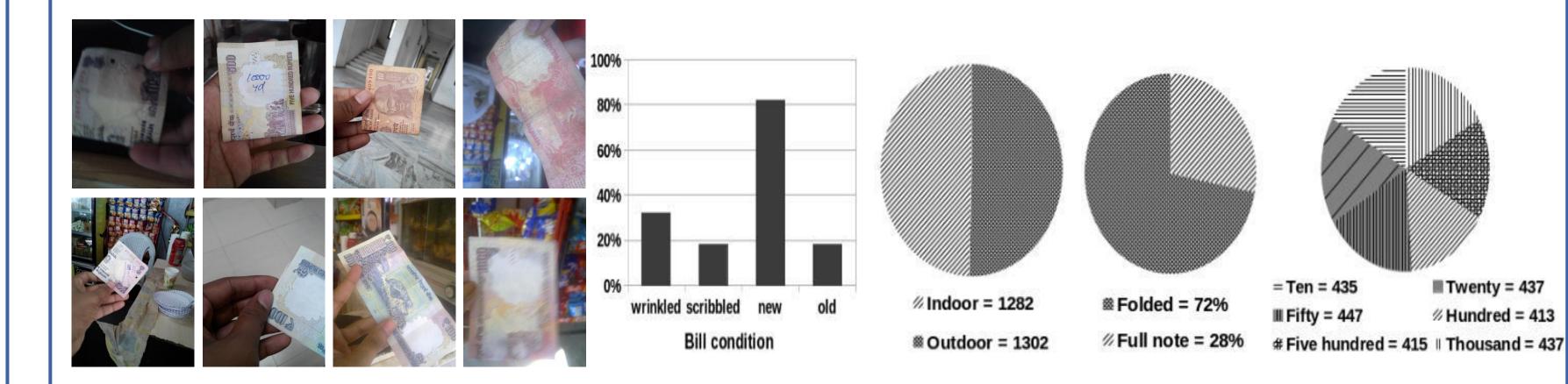
Classification of bills in the image uses an instance retrieval pipeline: 1. Building a visual vocabulary -The set of clusters of features obtained from standard forms the visual descriptors, vocabulary of images. 2. Image Indexing using Text **Retrieval Methods -** Each image is

- We formulate the recognition problem as a task of fine-grained instance retrieval that can run on mobile devices.
- The real-world usage by the visually impaired introduces challenging queries in terms of the image quality, the portion of the bill visible, illumination and clutter.
- Strong restrictions in the memory, application size, and processing time.
- A thin index structure is used to make the application efficient and compact.

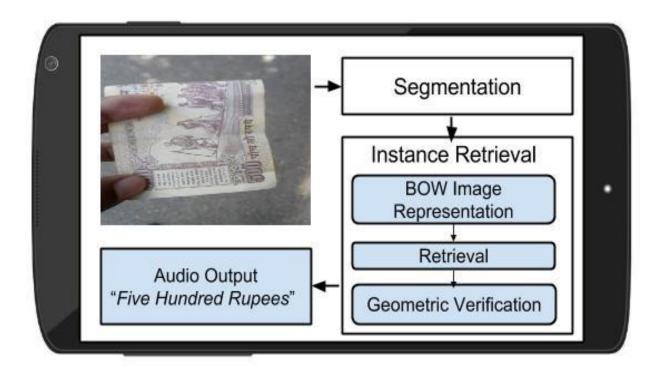
Method Overview

• High-level control flow diagram

1. The app once started does not need any input from (App Start) Image Capture Image Currency the user. Recognition 2. It takes a picture when the Ambiguous Result phone is held stable for some time. **Final Decision** Exit Tap on Audio Output 3. The app processes the image and gives audio feedback.


represented by a histogram of visual words followed by *tf-idf* weighting.

	K-means		Test Ir	nage
OFFLINE	TRAINING			U
]	 	


- **3. Retrieval Stage -** Each test image histogram is compared to the training set via cosine similarity. The ten most similar images are retained.
- 4. Spatial re-ranking To ensure spatial consistency of keypoints, we use geometric verification (GV) by fitting the fundamental matrix.
- 5. Classification Each retrieved image votes for its image class by the number of spatially consistent keypoints. The class with the highest vote is returned as the result.

Experiments and Results

Dataset [#] – 2584 images captures the possible use cases of a visually impaired user.

• A conceptual schematic of the back-end

A. Segmentation

- Image Segmentation reduces processing time and improves accuracy.
- It not only cuts down the data to process but also the likelihood of irrelevant features by eliminating much of the background.
- We use GrabCut, which involves energy minimization based on iterative graph cuts.
- The cost function for this is:

$$E(x,y) = -\sum_{i} \log p(y_i|x_i) + \sum_{(i,j)\in\mathcal{E}} S(y_i,y_j|x)$$

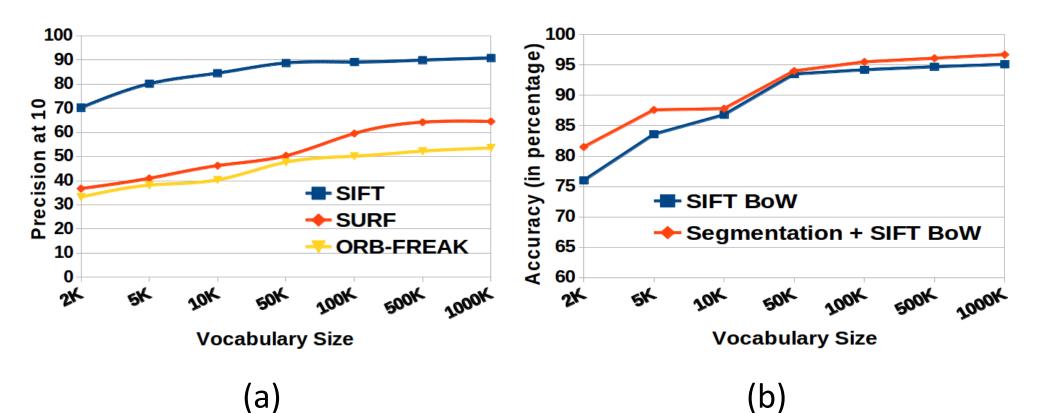
where χ_i is the colour of the *i*th pixel and y_i is +1 if the pixel belongs to the object, otherwise -1. $S(y_i, y_i | x)$ favours neighbor pixels with similar color to have the same label.

Images from the dataset with bills in varying illumination and background.

Various statistics that reflects the dataset's comprehensiveness.

Results

1. Results of mobile adaptation (a) Storage and memory requirements (b) Time analysis


	AM use (on average) overted index ocabulary (10K) eypoints location	Size
RAM u Inverte (a) Vocabu Keypoi	RAM use (on average)	23.5MB
	nverted index Vocabulary (10K) Keypoints location	20.5MB
	5.3MB	
	Keypoints location	11MB
	Annotations	6.9KB

	Module	SIFT BoW+GV Time in seconds			
	wodule	without segmentation	with segmentation		
	Segmentation	-	0.27 s		
	SIFT keypoints detection	0.25 s	0.25 s		
(b)	SIFT descriptor extraction	0.27 s	0.13 s		
	Assigning to vocabulary	0.01 s	0.01 s		
	Inverted index search	0.12 s	0.12 s		
	Spatial re-ranking	0.61 s	0.31 s		
	Total Recognition Pipeline	1.26 s	1.09 s		

2. Classification Accuracy using SIFT, SURF and ORB-FREAK each as the feature, with segmentation, for various sizes of the vocabulary.

Footuro	Vocabulary Size						
Feature	2 K	5K	10K	50K	100K	500K	1000K
SIFT	81.2%	87.6%	87.8%	93.9%	96.1%	96.3%	96.7%
SURF	68.7%	71.4%	72.8%	79.6%	84%	92%	92.4%
ORB-FREAK	49.8%	55.8%	56.6%	65.2%	66.1%	69.3%	71.1%

3. (a) Precision at 10 with segmentation. (b) Comparison between accuracy of SIFT BoW + GV and segmentation + SIFT BoW + GV.

• Segmentation results

Conclusions

- Succeeded in developing a system that recognizes bills reliably, and ported the system to a mobile environment.
- With limited processing power and memory, the system still achieves high accuracy and low reporting time.
- Segmentation is particularly helpful for retrieval.
- Easily adaptable to other currencies, while maintaining performance.

IIIT – Hyderabad, INDIA

References

- 1. Jayaguru Panda, Michael S. Brown, and C. V. Jawahar. Offline mobile instance retrieval with a small memory footprint. ICCV, 2013.
- 2. C. Rother, V. Kolmogorov, and A. Blake. GrabCut: interactive foreground extraction using iterated graph cuts. SIGGRAPH, 2004.
- 3. J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. ICCV, 2003.
- 4. Xu Liu. A camera phone based currency reader for the visually impaired. ASSETS, 2008.

[#]Android App, Code and Data are available on Project Web Page

http://researchweb.iiit.ac.in/~suriya.singh/Currency2014ICPR/

Centre for Visual Information Technology http://cvit.iiit.ac.in

http://www.iiit.ac.in

