

Mila facebook

Overview

8 /16 bits RGB / hyperspect images

Pixel-wise

- Failures due to shadows, clutter, occlusion and visual ambiguity.
- Difficult to enforce road topology supervision

Task

Predicts topologically correct and connected road mask.

Joint learning of orientation and segmentation

Path a ⇒ b in connecter' road maps

Path a ⇒ b in **broken** road maps

Contributions

L. Orientation Learning Task

- Auxiliary task to enforce connectivity
- ✓ Free annotation from road linestrings
- 2. Connectivity Refinement
- Modeled as inpainting task of semantic labels
- Pre-trained with corrupted GT road masks
- **Stacked Multi-branch Modules**
- Fully convolutional module
- ✓ Effectively utilize the mutual information between tasks

Road Orientation

- We want instance like feature which also ensure connectivity between segments
- Road segments lack the defined boundary and are interconnected
- Encode Road Orientation towards next pixel in same or adjacent road segment

 $\frac{p_i(x,y) - p_j(x,y)}{||p_i(x,y) - p_j(x,y)||_2^2}$ $\equiv \langle 1 \quad \measuredangle o_r \rangle$ $\overline{v}_{ij}(x,y)$ otherwise.

Connectivity Supervision

Learning road orientations poses connectivity constraint and favours connected road segment.

Equal contributions

We thank NSERC for partially supporting the work

Improved Road Connectivity by Joint Learning of Orientation and Segmentation

stacked multi-branch modules.

Saikat Basu

C. V. Jawahar

Manohar Paluri

Results

• Captures the deviations in shortest path distances between all pair of nodes in a graph.

 $S_{P \to T} = 1 - \frac{1}{|V|} \sum min \left(1, \frac{|L(a,b) - L(\hat{a},\hat{b})|}{L(a,b)} \right)$ $APLS = \frac{1}{N} \sum_{(y,\hat{y})} \left(\right)$ $\left(\frac{\frac{1}{S_{P \to T}(G,\hat{G})} + \frac{1}{S_{T \to P}(\hat{G},G)}}{\frac{1}{S_{P \to T}(G,\hat{G})} + \frac{1}{S_{T \to P}(\hat{G},G)}} \right)$

 $S_{P \rightarrow T}$ measures the sum of difference of shortest path for each node pair in ground truth graph.

Road Extraction Comparison

	Metric	DRM [1]	TL [2]	L34 [4]	L34 [4] + Orientation	MatAN [3]	Ours
t	road loU	N/A	56.29	60.33	62.45	52.86	63.75
	APLS	50.59	49	55.69	60.76	46.44	63.65
	road loU	N/A	64.95	62.75	64.71	46.88	67.21
	APLS	61.66	56.91	65.33	68.71	47.15	73.21

a) Consistent improvement with joint Orientation Learning

	Spac	cenet	DeepGlobe		
	road IoU	APLS	road IoU	APLS	
	59.04	52.65	62.12	63.31	
ion	61.90	59.06	64.77	68.93	
S*	58.41	52.76	63.54	66.20	
	60.33	55.69	62.75	65.33	
on	62.45	60.77	64.72	68.71	
*	60.72	55.91	63.79	67.42	

c) Improvement with Connectivity Refinement

	Spac	enet	DeepGlobe		
	road IoU	APLS	road IoU	APLS	
34)	60.33	55.69	62.75	65.33	
	62.45	60.77	64.72	68.71	
	62.76	62.03	65.03	69.77	

* Junctions: Predict intersection points of road segments # n-Stack: Stacked Multi-branch model with n-stacks

challenge

b) Architecture studies with Orientation Learning

Mathad	Space	enet	DeepGlobe	
Internod	road IoU	APLS	road IoU	APLS
Resnet -18	61.90	59.06	64.77	68.93
Linknet 34	62.45	60.77	64.72	68.71
UNet	60.12	58.59	65.21	67.81
1 - Stack [#]	63.26	60.92	65.60	70.23
2 - Stack [#]	63.75	63.65	67.21	73.21
3 - Stack [#]	63.73	62.89	66.61	72.48

d) Progressive improvement with each contribution

Mathad	Spacenet		DeepGlobe	
Inethod	road IoU	APLS	road IoU	APLS
Base (2-Stack)	61.51	58.70	64.23	67.98
+ Multi-Scale	61.80	58.49	64.44	67.92
+ Orientation	63.44	61.78	66.81	72.03
+ Feature Fusion	63.75	63.65	67.21	73.21
+ Refinement	63.76	63.79	67.02	73.20